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1. Project Overview

Introduction

The Ecosystem Simulation Project is an interactive, agent-based simulation that models the
behaviour and interactions of various entities within a virtual environment. Utilising machine
learning, this project simulates the evolution of entities' traits as they adapt to their
surroundings, interact with each other, and respond to environmental stimuli.

Purpose and Objectives

The primary purpose of the Ecosystem Simulation Project is to create a dynamic and
realistic simulation of an ecosystem. The key objectives include:

1.

2.

Modeling Ecosystem Dynamics: Accurately simulate interactions between entities
and their environment, including resource consumption, reproduction, and survival.
Machine Learning Integration: Implement neural networks to allow entities to learn
and adapt their behaviours based on environmental feedback.

Visualisation: Provide a graphical interface to observe the simulation in real-time,
offering insights into the evolutionary processes and ecosystem stability.

Scope of the Project

The scope of this project includes the following components:

Environment Generation: Creation of a virtual environment consisting of various
terrain types (land, water, sand, trees) and resources (plants).

Entity Behavior Simulation: Development of autonomous entities with distinct
attributes and behaviours, governed by neural networks.

Data Collection and Analysis: Real-time collection of simulation data, including
population dynamics, average traits, and resource availability, with visualisation
through graphs and statistics.

Key Features

Procedural Environment Generation: The environment is procedurally generated
using Perlin noise, ensuring a unique and diverse landscape for each simulation run.
Autonomous Entities: Entities possess attributes such as hunger, thirst,
reproductive urge, speed, and sensory radius. These attributes evolve over time
through a combination of genetic inheritance and mutation.

Neural Network Decision-Making: Entities use neural networks to make decisions
based on their current state and environmental conditions, enabling adaptive and
intelligent behaviours.

Dynamic Resource Management: Resources in the environment, such as plants,
grow and regrow over time, providing entities with varying availability of food.
Real-time Visualisation: The simulation is visualised in real-time using Pygame,
with graphical representations of entities and the environment, as well as statistics
and trends over time.



Implementation Overview
The implementation of the Ecosystem Simulation Project involved several key components:

e Environment Setup: Using Pygame for rendering and noise for procedural
generation, the environment consists of tiles representing different types of terrain.

e Entity Attributes and Behaviours: Entities are initialised with specific attributes,
and their behaviours are governed by neural networks implemented using PyTorch.

e Simulation Loop: The main simulation loop handles updates to the environment and
entities, processes user inputs, and renders the simulation in real-time.

e Data Tracking and Visualization: Data on entity populations, average traits, and
other metrics are tracked over time and visualised using Matplotlib.

Development Process

The development process was iterative and involved continuous testing and refinement. The
major phases included:

1. Initial Planning: Defined the project scope, objectives, and key features.

2. Environment Setup: Established the coding environment and implemented
procedural environment generation.

3. Core Functionality Development: Developed the basic mechanics of the
simulation, including entity movement and interaction.

4. Neural Network Integration: Integrated machine learning models to enhance entity
decision-making and adaptation.

5. Visualisation and Ul Development: Added graphical elements and user interface
components for real-time observation and interaction.

6. Testing and Optimization: Conducted thorough testing and performance
optimization to ensure a stable and efficient simulation.

Conclusion

The Ecosystem Simulation Project successfully created a dynamic and interactive simulation
that models ecosystem interactions and evolution. By integrating neural networks, the
project demonstrated how entities can learn and adapt to their environment, providing
valuable insights into the complexities of ecosystem dynamics. The visualisation and data
analysis components offer a comprehensive tool for studying and understanding these
interactions, laying the groundwork for future enhancements and research in this field.



2. Project Objectives

Introduction

The Ecosystem Simulation Project was undertaken with several primary objectives aimed at
advancing the understanding and visualisation of ecosystem dynamics through the use of
modern computational techniques. The project's design leverages interactive simulation,
machine learning, and real-time visualisation to create a comprehensive model of an
evolving ecosystem.

Primary Objectives
1. Create a Dynamic, Interactive Simulation

The foremost objective of the project was to create a dynamic, interactive simulation that
accurately models the interactions within an ecosystem. This involves:

e Realistic Environment Generation: Using procedural techniques, such as Perlin
noise, to generate diverse and realistic environments consisting of land, water, trees,
and sand tiles.

e Autonomous Entities: Developing entities with various traits (e.g., hunger, thirst,
speed, reproductive urge) that evolve over time through genetic inheritance and
mutation.

e Resource Management: Implementing a system where resources such as plants
grow, regrow, and deplete, providing entities with challenges that mirror real-world
ecological dynamics.

2. Implement Neural Networks for Learning and Adaptation

A critical aspect of the project was to integrate neural networks, enabling entities to learn
from and adapt to their environment. This objective was achieved by:

e Neural Network Models: Designing neural networks using PyTorch to control entity
behaviours based on their state and environmental conditions.

e Reinforcement Learning: Applying reinforcement learning techniques to allow
entities to make decisions that maximise their survival and reproductive success.

e Behavioural Evolution: Allowing entities to exhibit complex behaviours such as
seeking food and water, avoiding predators, finding mates, and hunting prey, thereby
simulating natural selection and adaptation processes.

3. Visualise the Simulation with Real-Time Statistics and Graphical
Representations

To facilitate understanding and analysis, the project aimed to provide real-time visualisation
of the simulation, along with comprehensive statistics and graphical representations of the
ecosystem's state. This included:

e Real-Time Graphics: Utilising Pygame to render the simulation environment and
entities, allowing users to observe interactions and changes in real-time.



e Statistical Tracking: Collecting and displaying real-time statistics on entity
populations, average traits, and resource levels.

e Graphical Analysis: Implementing plotting functions using Matplotlib to visualise
trends over time, such as changes in population dynamics, trait averages, and
dietary preferences.

Conclusion

The Ecosystem Simulation Project successfully met its primary objectives, creating a robust,
dynamic, and interactive simulation environment. The integration of neural networks enabled
entities to learn and adapt, providing a realistic model of ecosystem interactions. The
real-time visualisation and comprehensive statistical tracking facilitated a deeper
understanding of ecological dynamics and evolutionary processes. This project not only
achieved its goals but also established a strong foundation for further research and
enhancements in the field of computational ecology.



3. Development Process

Introduction

The development process of the Ecosystem Simulation Project was structured in iterative
phases, allowing for continuous testing, refinement, and enhancement. This section outlines
the key phases involved in the project's development, detailing the activities and
achievements in each phase.

Major Phases
Initial Planning

The initial planning phase was crucial in setting the foundation for the project. Key activities
included:

e Defining Project Scope: Determines the boundaries and limits of the project to
ensure focus and manageability.

e Setting Objectives: Established clear and achievable objectives, including the
creation of a dynamic simulation, neural network integration, and real-time
visualisation.

e Identifying Key Features: Outlined essential features such as entity behaviours,
environmental interactions, and statistical tracking.

Environment Setup

Setting up the coding environment was the next step, ensuring that all necessary tools and
libraries were available for development. This involved:

e Establishing the Development Environment: Set up Python with necessary
libraries like Pygame, PyTorch, NumPy, Matplotlib, and noise.

e Version Control: Implemented version control using Git to manage changes and
collaboration effectively.

Core Functionality Development

In this phase, the basic mechanics of the simulation and the behaviours of entities were
developed. Key achievements included:

e Map Generation: Created a procedurally generated environment using Perlin noise
to simulate diverse terrains.

e Entity Mechanics: Developed the core mechanics for entity behaviours, including
movement, hunger, thirst, and reproduction.

e Resource Management: Implemented systems for plant growth and regrowth,
providing a dynamic resource environment.

Neural Network Integration



The integration of neural networks marked a significant enhancement in the simulation's
complexity and realism. Activities included:

e Model Design: Designed and implemented neural networks using PyTorch to control
entity behaviours.

e Reinforcement Learning: Applied reinforcement learning techniques, allowing
entities to learn from their environment and improve their survival strategies.

e Action and State Representation: Defined state vectors and action spaces for
entities, enabling the neural networks to make informed decisions.

Visualisation and Ul Development

Adding graphical elements and user interface components was essential for real-time
monitoring and interaction. Key developments were:

e Real-Time Graphics: Utilised Pygame to render the environment and entities,
providing a visual representation of the simulation.

e User Interface: Developed Ul components to display real-time statistics, graphs, and
entity-specific information.

e Interactive Elements: Implemented features such as entity selection and detailed
stats pop-ups for enhanced user interaction.

Testing and Optimization

The final phase focused on ensuring the simulation's robustness and performance. Key
activities included:

e Thorough Testing: Conducted extensive testing to identify and fix bugs, ensuring
stable and accurate simulation behaviour.

e Performance Optimization: Optimised code to improve performance, ensuring
smooth and efficient execution of the simulation.

e Data Tracking: Implemented data tracking mechanisms to collect and visualise
simulation statistics over time, aiding in performance monitoring and analysis.

Conclusion

The development process of the Ecosystem Simulation Project was methodical and iterative,
involving continuous refinement to achieve the project's objectives. Each phase contributed
to building a robust, dynamic, and interactive simulation, leveraging neural networks and
real-time visualisation to model complex ecosystem interactions effectively. This structured
approach ensured the successful completion of the project, laying a solid foundation for
future enhancements and research in computational ecology.



4. System Architecture

Introduction

The system architecture of the Ecosystem Simulation Project is designed to model complex
interactions within a dynamic environment, leveraging advanced technologies such as neural
networks for entity behaviour. This section provides a detailed overview of the key
components of the system architecture, highlighting their roles and interactions.

Major Components
Environment

The environment forms the foundation of the simulation, representing the virtual world in
which entities interact. Key elements include:

e Tiles: The world is divided into a grid of tiles, each representing different types of
terrain such as land, water, sand, and trees. Tiles have properties that influence
entity behaviour and environmental dynamics.

o Tile Attributes: Each tile has coordinates (X, y), a type (Land, water, sand,
tree), and a regrowth timer for plant regeneration.

o Tile Methods: Tiles can update their state and render themselves on the
display.

e Plants: Represented as stationary resources, plants are essential for herbivorous
entities. Plants grow on land tiles and have a regrowth cycle.

o Plant Attributes: Each plant has coordinates (x, y) on the grid.
o Plant Methods: Plants can render themselves on the display.

Entities

Entities are autonomous agents within the simulation, each with unique attributes and
behaviours influenced by neural networks. Key features include:

e Attributes: Entities have various attributes such as hunger, thirst, reproductive urge,
speed, sensory radius, diet preference (herbivore, carnivore, omnivore), gender, and
size.

e Behavioural States: Entities can be in different states such as idle, moving, seeking
food, seeking water, seeking a mate, or hunting prey.

e Lifecycle: Entities age over time, and their attributes change accordingly. They can
reproduce, leading to offspring with combined and potentially mutated genes from
both parents.

e Neural Network Integration: Entities utilise neural networks to make decisions
based on their current state and environment.

Entity Neural Network

The neural network component is critical for simulating intelligent behaviour in entities. Key
aspects include:



e Architecture: The neural network consists of an input layer, hidden layers, and an
output layer.
o Input Layer: Processes the state vector, which includes normalised values of
hunger, thirst, reproductive urge, and other relevant environmental factors.
o Hidden Layers: Use RelLU activation functions to learn complex patterns and
relationships.
o Output Layer: Produces an action vector that determines the entity's next
action.
e Learning: The neural network is trained using reinforcement learning techniques,
where entities receive rewards or penalties based on their actions and outcomes.
o Q-learning: Entities learn optimal behaviours by updating Q-values through
experiences stored in a replay memory.

User Interface

The user interface provides interactive elements for user interaction and visualisation,
enhancing the simulation experience. Key components include:

e Real-Time Graphics: The simulation environment and entities are rendered using
Pygame, providing a visual representation of the ecosystem.

e Interactive Elements: Users can interact with the simulation by selecting entities,
zooming infout, and dragging the view.

e Statistics and Graphs: Real-time statistics such as entity population, average
attributes, and diet preferences are displayed. Graphs visualise these statistics over
time, aiding in performance monitoring and analysis.

o Entity Stats: Detailed information about selected entities, including their
attributes and current state, is displayed in a pop-up window.

Conclusion

The system architecture of the Ecosystem Simulation Project is a robust and modular
design, integrating various components to create a dynamic and interactive simulation. By
leveraging neural networks for entity behaviour and providing comprehensive visualisation
tools, the architecture effectively models complex ecosystem interactions, making it a
valuable tool for studying computational ecology. This structured approach ensures flexibility
for future enhancements and scalability for more complex simulations.



5. Implementation Details

Libraries and Technologies

The Ecosystem Simulation Project leverages several powerful libraries and technologies to
create a dynamic and interactive simulation environment. The primary libraries and
technologies used include:

Pygame: Utilised for rendering the simulation environment and handling user
interactions. It provides a straightforward way to create graphical interfaces and
manage user input.

Numpy: Used for numerical operations and data manipulation. It facilitates efficient
handling of arrays and matrices, which are essential for simulation calculations.
Matplotlib: Employed for plotting graphs and visualising data. This library enables
the generation of detailed plots to analyse simulation statistics and trends over time.
PyTorch: Used to define and train neural networks. PyTorch provides the framework
for creating and optimising the neural networks that drive the behaviour of entities in
the simulation.

Noise: Generated the procedural map of the environment. The noise library is used
to create realistic terrain features such as land, water, sand, and tree tiles.

Key Features

The simulation incorporates several key features that contribute to its complexity and
realism:

Dynamic Environment: The environment consists of various types of tiles (land,
water, sand, tree) and plants that grow and regrow. This dynamic setting provides a
realistic backdrop for entity interactions.

Autonomous Entities: Entities in the simulation have attributes such as hunger,
thirst, reproductive urge, speed, and sensory radius. These attributes evolve over
time, and entities can reproduce, leading to offspring with combined and mutated
genes.

Neural Networks: Entities make decisions based on the output of neural network
models. These neural networks are trained to optimise entity behaviour based on
their state and environment.

Real-time Statistics: The simulation displays real-time statistics on entities and the
environment, including population counts, average traits, and diet preferences. These
statistics provide insights into the evolving ecosystem.

Graphical Visualisation: Data over time, such as population trends and average
traits, are plotted using Matplotlib. These visualisations help in analysing the
performance and dynamics of the simulation.

Code Structure

The code for the Ecosystem Simulation Project is structured into several key components:

Tile and Plant Classes: These classes define the environment elements.



o Tile Class: Represents individual tiles in the environment, with attributes for
position, type, and regrowth timer. Methods include updating and drawing
tiles.

o Plant Class: Represents plants in the environment, with attributes for
position. Methods include drawing plants.

e Entity Class: Represents individual agents within the simulation, with attributes and
behaviours.

o Attributes: Include hunger, thirst, reproductive urge, speed, sensory radius,
diet preference, gender, size, and age.

o Methods: Include moving, seeking food/water, mating, hunting prey, random
walking, updating gestation, and drawing entities.

e EntityNet Class: Defines the neural network architecture used by entities.

o Architecture: Includes an input layer, hidden layers, and an output layer.

Uses RelLU activation functions and is trained using Q-learning techniques.
e Main Simulation Loop: Controls the flow of the simulation, including environment
updates, entity updates, rendering, and user input handling.

o Environment Update: Handles the regrowth of plants and the state of tiles.

o Entity Update: Manages the movement and behaviour of entities, as well as
their interactions with the environment and each other.

o Rendering: Draws the environment, plants, and entities on the screen. Also
displays real-time statistics and entity-specific information when selected.

o User Input Handling: Allows users to interact with the simulation through
mouse and keyboard inputs, enabling actions such as selecting entities,
zooming, and dragging the view.

Detailed Code Snippets



# Environment setup
class Tile:
def _ init (self, x, y, tile type):
self.x = x
self.y = y
self.type = tile type
selfl.regrowth timer = 0

def update (self):
if self.type == "land" and self.regrowth_timer > O:
self.regrowth timer -= 1

def draw(self, win, offset x, offset y, scale):

if self.type = "walter':
color = BLUE

elif self.type = "land":
color = GREEN

elif self.type =— "tree":
color = BROWN

elif self.type == "sand":

color = SAND
pygame.draw.rect (win, cecler,
({self.x * TILE SIZE - offset x) * scale,
(self.y * TILE SIZE - offset y) * scale,
TILE SIZE * scale,
TILE SIZE * scale))

class Plant:
def _ init (=elf, x, y):
self.x = x
self.y =y

def draw(self, win, offset x, offset y, scale):
pygame.draw.circle (win, DARK GREEN,
(int ({self.x * TILE SIZE + TILE S5IZE / 2 - offset x) * scale),
int({(self.y * TILE_SIZE + TILE SIEZE / 2 - offset y) * scale)),
int (TILE_SIZE / 4 * scale))



def generate map(width, height):
scale = 30.0
cctaves = &
persistence = 0.5
lacunarity = 2.0

seed = np.random. randint (0, 100}

world np.zeroes ((width // TILE 5IZE, height // TILE SIZE})

for 1 in range(width // TILE SIZE}:
for j in range (height // TILE SIZE):
world[i] [J] = noise.pnoiseZ (i/scale,

jifscale,
cctaves=octaves,
persistence=persistence,
lacunarity=lacunarity,
repeatx=width // TILE SIZE,
repeaty=height // TILE SIZE,

base=seed)
tiles = []
plants = []
for y in range(height // TILE SIZE}:
row = []

for x in range (width // TILE SIZE):
if world[x] [¥] < -0.035:
tile type = "water"
elif world[x] [y] < 0:
tile type = "sand"
elifl world[x][¥] = 0.3:
tile type = "land"
if random.randem() < PLANT PROBABILITY:
plants.append (Plant(x, 7))

tile type = "tree"
row.append (Tile(x, y, tile type))
tiles.append (row)

return tiles, plants

tiles, plants = generate map(MAP WIDTH, MAP HEIGHT)



class Entity:
def _ init  (self, x, y, tiles, genes=lione, generation=1, parent genes=lione, medel=lone):

self.x, self.y = self.find valid pesition(int(x), int(y), tiles)
self.target x, self.target y = self.x, self.y
self.hunger = genes['hunger'] if genes else HUNGER THRESHOLD
self.thirst = genes['thirst'] if genes else THIRST THRESHOLD
self.reproductive urge = genes['reproductive urge'] if genes else 0
self.speed = genes['speed'] if genes =lse random.uniform({l.0, 4.0)
self.sensory radius = genes['sensory radius'] if genes else random.randint(l, 10)
self.reproduction_threshold = genes['reproduction threshold'] if genes else REPRODUCTION THRESHOLD
self.hunger thresheld = genes['hunger threshold'] if genes else HUNGER THRESHOLD
self.thirst thresheld = genes['thirst threshold'] if genes else THIRST THRESHOLD
self.diet preference = genes['diet preference'] if genes else 'herbivore'
self.offspring count = genes['cifspring count'] if genes else random.randint(l, 3)
self.size gene = genes['size'] if genes else random.uniform(0.5, 1.5) # Size gene
self.alive = True
self.gender = random.choice([ ' male', 'female'])
self.gestation duration = genes['gestation duration'] if genes and self.gender == 'female' else random.randint (50, 200)
self.gestation timer = genes['gestation timer'] if genes znd self.gender == 'female' else 0 # Timer for gestation period
self.child genes = genes.copy() il genes =lse lone
self.generation = generation
self.parent genes = parent genes il parent genes =lse {}
self.unimpressed females = set()
self.state = 'idle' # Current state of the entity
self.direction = (random.uniform{-1, 1), random.uniform{-1, 1)) # Initial random direction
self.steps_since direction change = 0 # Steps taken in the current direction
self.pregnant = False if self.gender = 'female' =lse None # Pregnancy state for females
self.model = model # Neural network model
self.age = 0 # Age of the entity
self.old age threshold = genes['cld age thresheld'] if genes else randem.randint (1000, 3000)
self.size = 0.2 # Starting size, will grow as the entity ages

[ find valid position(self, x, y, tiles):
while tiles[int(y)][int(x)].type == "water" tiles[int (y) ] [int(x)].type = "free"
X, y = random.randint(0, MAP WIDTH // TILE SIZE - 1), random.randint(0, MAP HEIGHT // TILE SIZE - 1)
return x, y

is wvalid move (self, x, y, tiles):

if 0 <= int(x) < MAP WIDTH // TILE SIZE and 0 <= int(y) < MAP HEIGHT // TILE SIZIE:
rn tiles[int(y)] [int(x)].type in ["land", "sand"]

se

return

check_adjacent water(self, tiles):
dx in range(-1, 2):

dy in range(-1, 2):
if 0 <= int(self.x + dx) < MAP WIDTH // TILE SIZE and 0 <= int(self.y + dy) < MAP HEIGHT // TILE SIZE:
if tiles[int(self.y + dy)][int(self.x + dx)].type == "water"
return True

return Falae



move (self, tiles, food sources, mates):
if not self.alive:
self.state = 'dead’

self.hunger -= 1
self.thirst -= 1
self.age += 1

if self.age >= self.old age threshold:
self.alive = False
self.state = 'dead'

# Grow as the entity ages
if self.age < ADULT AGE:
self.size = 0.2 + 0.8 * (self.age / ADULT AGE)

self.size = 1.0

if not self.pregnant:
if self.reproductive urge < self.reproduction threshold:
self.reproductive urge += 1

if self.hunger <= 0 or self.thirst <= 0:
self.alive = Fa
self.state = 'dead'

state wector = self.get state vector(tiles, food sources, mates)
state tensor = torch.tensor(state vector, dtype=torch.fleoat3z)
action vector = zelf.model(state tensor).detach() .numpy ()
self.take action(action wector, tiles, food sources, mates)

# Smooth movement interpolation
self.x += (self.target x - self.x) * 0.1
self.y += (self.target y - self.y) * 0.1

get_state wector(self, tiles, food sources, mates):
# Define a state wector for the neural network
state wector = [
self.hunger / self.hunger thresheld,
self.thirst / self.thirst threshold,
self.reproductive urge / self.reproduction threshold,
self.x / MAP WIDTH,
self.y / MAP HEIGHT,
len(food sources) / (MAP WIDTH * MAP HEIGHT),
len(mates) / (MAP WIDTH * MAP HEIGHT),
1 if self.hunger < self.hunger threshold * 0.2 =lse
1 if self.thirst < self.thirst thresheld * 0.2

1

return state wector

# Binary f[lag for critical hunger
# Binary flag for critical thirst



def take action(self, action wecter, tiles, food sources, mates):
action = np.argmax (action wector)
if action = 0: # Move in a direction
self.direction = (random.uniform{-1, 1), random.uniform{-1, 1))}
new x = self.x + self.direction[0] * self.speed
new y = self.y + self.direction[l] * self.speed
if self.is valid move(new x, new y, tiles):
self.target x, self.target y = new x, new y

self.state = 'moving'
elif action = 1: # Seek food
self.seek food(tiles, food sources)
elif action == 2: # Seek water
self.seek water(tiles)
elif action == 3: # Seek mate

if self.age »>= ADULT AGE:
self.seek mate (mates, tiles)
2lif action == 4: # Hunt prey
self.hunt prey(tiles, mates)
else: # Random walk
self.random walk(tiles)

def seek food(self, tiles, food sources):
target food = Hone
min distance = float('inf')

fc ':_Ecn:rd in food sources:
distance = np.sgrt{(self.x - food.x) ** 2 + (self.y - food.y) ** 2)
if distance < min distance and distance <= self.sensory radius:

min distance = distance
target food = food

if target food:
1f min distance < 1:
food sources.remove (target food)
tiles[int(target food.y)] [int(target food.x)].regrowth timer = REGROWTH_TIME
self.hunger = self.hunger threshold
self.state = 'idle' # Reset state after eating

direction x = (target foocd.x - self.x) / min distance

direction y = (target focd.y - self.y) / min distance

new x = self.x + direction x * self.speed

new y = self.y + direction y * self.speed

if self.is valid move (new x, new y, tiles):
self.target x, self.target y = new x, new y
self.state = 'seeking food'



seek_water(self, tiles):
if self.check adjacent water(tiles):
self.thirst = self.thirst threshold
self.state = 'idle' # Reset state after drinking
else:
£ ¥ 1in range(max(0, int(self.y - selfl.sensory_radius)), min(MAP HEIGHT // TILE_SIZE, int(self.y + sell.sensory radius))):
r x in range(max (0, int(self.x - self.sensory radius)), min(MAP WIDTH // TILE SIZE, int(self.x + self.sensory_radius)))
if tiles[int(y)][int(x)].type =— "water":
distance = np.sgrt((self.x - x) ** 2 + (self.y - y) *% 2)
if distance <= self.sensory_radius:
direction x = (x - self.x) / distance
direction y = (y - self.y) / distance
new x = self.x + direction x * self.speed
new y = self.y + direction y * self.speed
if self.is valid move (new x, new y, tiles):
self.target x, self.target y = new x, new y
self.state = 'seeking water’
retu

seek mate(self, mates, tiles):

if self.reproductive urge >= self.reproduction threshold:
1f self.gender = 'male’:

mate in mates:

if mate != self and mate.alive and mate.reproductive urge >= self.reproduction threshold and mate.gender = 'female’
distance = np.sgrt((self.x - mate.x) ** 2 + (self.y - mate.y) ** 2}
if distance <= self.sensory_radius:
self.reproductive urge = 0
mate.reproductive urge = 0
mate.gestation timer = mate.gestation duration # S5Start gestation period
mate.child genes = self.combine genes(self, mate)
mate.parent genes = {'mother': mate.get genes(), 'father': self.get gemes()]} # Store parent genes
mate.pregnant = True # Mark the female as pregnant
state = 'idle' # Reset state after mating
T
elil self.gender 'female’:
r mate in mates:
if mate != self and mate.alive and mate.reproductive urge >= self.reproduction threshold mate.gender — 'male':

distance = np.sgrt((self.x - mate.x) ** 2 + (self.y - mate.y) ** 2}
1f distance <= self.sensory_radius:
self.repreductive urge = 0
mate.reproductive urge = 0
self.gestation timer = self.gestation duration # Start gestation period
self.child genes = self.combine genes(self, mate)
self.parent genes = ['mother': self.get genes(), 'father': mate.get genes()}
self.pregnant = True # Mark the female as pregnant
self.state = 'idle' # Reset state after mating

4 Store parent genes

return
if self.state =— 'idle':
self.random walk(tiles)

def hunt_prey (self, tiles, entities)

if self.diet preference in ['carnivore’, 'omnivore'l:
target_prey e

float('inf")

min_distance
for entity in entities
if entity 1= self and entity.alive and entity.x != self.x and entity.y != self.y
distance = mp.sqrt((seLf.x - entity.x) ** 2 + (self.y - entity.y) ** 2)
i distance < min distance and distance <= self.sensory_radius and entity.size gene < self.size gene

min_distance = distance
target_prey = entity

it target prey
T i distance < 1
target. prey .alive - alse
Sl hanger = self hunger_threshold
selfistate - 'idlel § Redet state after eating

(target_prey.x - self.x) / min distance

(target_prey.y - self.y) / min distance

new_x = self.x + direction x + self_speed

newsy - self.y + directiony * self speed

L1 2e1f.is valid move (new x, new v, tiles)
self.target X, self.target y - new x, new y
self.state = 'hunting prey’

direction,
directi

of conbine_genes (self, paventl, pavent2):
genes = (}
mumeric_genes = ['hunger’, 'thirst', 'reproductive urge’, 'speed’, 'sensory_radius',

"gestation_duration', 'gestation_timer', 'reproduction_threshold', 'hunger_threshold', 'thirst_threshold', 'offspring count', 'old_age_threshold’,

for key in mmeric_genes
gene_value = (parentl.get_genes () [key] + parent2.get_genes() (keyl) / 2
it randon.random() < MUTATION_PROBABILITY:

gene value += random.umiform(0.7, 1.3
geneskey] = gene_value

# Handle diet preference separately
51 randon.random() < MUTATION PROBABILITY

genes|['dict_preference’] = random.choice(['herbivore', 'carnivore’, 'omnivore'])
else:
genes['diet _preference’] = parentl.diet preference if random.random() < 0.5 els= parent?.diet preference

return genes

o¢ random walk (self, tiles)
Se1t.steps, since, dizection change += 1

11 se1f..steps_since direction change > 50: 4 Change direction cvery 50 steps
self.direction = (random.uniform(-1, 1), random.uniform(-1, 1))
self.steps_since direction change = 0

self.x + self.direction[0] * self.speed
self.y + self.direction[l] * self.speed

new_y

47 self.is valid move (new_x, new.y, tiles):
self.target x, self.target_y = new X, new_y
self.state = 'vandering'

'size']



6. Neural Network Implementation

The Ecosystem Simulation Project leverages neural networks to simulate realistic and
adaptive behaviours in the entities within the ecosystem. This section outlines the design,
implementation, and functionalities of the neural networks used in the project.

Neural Network Design

The neural networks in this project are implemented using PyTorch, a powerful and flexible
deep learning library. The neural network architecture for each entity consists of three fully
connected layers:

e Input Layer: The input size is determined by the state vector of the entity, which
includes parameters such as hunger, thirst, reproductive urge, and position within the
map.

e Hidden Layers: Two hidden layers with a configurable number of neurons. Each
hidden layer uses the RelLU activation function to introduce non-linearity and enable
the network to learn complex patterns.

e Output Layer: The output layer size corresponds to the number of possible actions
an entity can take (e.g., move, seek food, seek water, seek mate, hunt prey, random
walk).

The architecture is defined in the EntityNet class, which extends the nn.Module class in
PyTorch.

# Define Neural HNetwork for Entities
EntityNet (nn.Module) :
__init (self, input size, hidden size, output size):
super (EntityNet, self). init ()

gelf.fcl = nn.Llinear(input size, hidden size)
gelf.fc2 = nn.Linear(hidden size, hidden size)
gelf.fc3 = nn.Linear(hidden size, output size)

forward(self, x):

X = torch.relu(self.fcl(x))
X = torch.relu(self.fc2 (x))
X = gelf.fc3(x)

X

Entity State Representation

Each entity's state is represented by a vector of normalised values that capture its internal
conditions and environmental context. The state vector includes the following elements:

Hunger level

Thirst level

Reproductive urge

X and Y positions on the map



e Density of food sources and potential mates in the vicinity
e Flags for critical hunger and thirst conditions

This state vector is used as input to the neural network to determine the best action for the
entity.

Action Selection

The neural network outputs a vector representing the estimated value of each possible
action. The entity selects the action with the highest value using the np . argmax function.
The possible actions include:

Move in a random direction
Seek food

Seek water

Seek a mate

Hunt prey

Random walk

The selected action is then executed, influencing the entity's behaviour and interactions with
the environment.

Reward System

The reward system is crucial for training the neural networks using reinforcement learning.
Entities receive rewards or penalties based on their actions and resulting conditions:

e Positive Rewards: Satisfying hunger, thirst, and reproductive urge.
¢ Negative Penalties: Experiencing critical hunger or thirst, or death.

The reward function is defined as follows:

get reward(entity):
reward = 0
entity.hunger »>= entity.hunger threshold:
reward += 1
entity.thirst »>= entity.thirst threshold:
reward += 1
entity.reproductive urge >= entity.reproduction thresheld:
reward += 1
entity.hunger < entity.hunger threshold * 0.2: # Penalize low hunger

reward -= 3
entity.thirst < entity.thirst threshold * 0.2: 4 Penalize low thirst
reward -= 3

entity.alive:
reward -= 10
reward



Training the Neural Networks

The neural networks are trained using Q-learning, a model-free reinforcement learning
algorithm. The key components of the training process include:

e Experience Replay: Experiences (state, action, reward, next state) are stored in a
memory buffer. A batch of experiences is sampled randomly for training, which helps
break the correlation between consecutive experiences and improves learning
stability.

e Q-Learning Update: The neural network is trained to minimise the mean squared
error (MSE) between the predicted Q-values and the target Q-values. The target
Q-values are computed using the Bellman equation:

g values = entity.model (state tensor)
next g values = entity.model (next state tensor)

target = reward tensor + gamma * torch.max(next g values).detach()

loss = nn.M5ELoss() (g values[action], target)

e Optimization: The Adam optimizer is used to update the neural network weights
based on the computed loss.

# Define optimizer
optimizer = optim.Adam([param entity entities param entity.model.parameters(}], lr=learning rate)

Integration and Performance

The neural networks are integrated into the entity update loop, ensuring that entities make
decisions based on their current state and the learned policies. Continuous training and
optimization allow the entities to adapt and improve their behaviours over time.

python

Copy code



# Update entities
entity entities:
entity.alive:
old state = entity.get state wector(tiles, plants, entities)
old action wector = entity.model (torch.tensor(old state, dtype=torch.float3Z)}
old action = torch.argmax(old action wvector) .item()
entity.move (tiles, plants, entities)
new state = entity.get state wector(tiles, plants, entities)
reward = get reward(entity)
memory .append( (old state, old action, reward, new state})

# Update gestation for each entity
entity.update gestation(entities, tiles)

Conclusion

The implementation of neural networks in the Ecosystem Simulation Project has been
instrumental in achieving realistic and adaptive behaviours in simulated entities. Through
careful design, state representation, action selection, reward systems, and training
methodologies, the project demonstrates the power and flexibility of neural networks in
ecological modelling and simulation. Future enhancements will continue to build on this
foundation, further refining the behaviours and interactions within the simulated ecosystem.



7. Testing and Results

The Ecosystem Simulation Project underwent extensive testing to evaluate the behaviour
and evolution of entities within the simulated environment. Various conditions were set to
observe how the entities adapted, interacted, and evolved over time. Key aspects of the
testing process and results are detailed below.

Testing Methodology

1. Simulation Runs:
o Multiple simulation runs were conducted with varying initial conditions, such
as different numbers of entities, resource distributions, and genetic variations.
o Each run lasted for a significant number of time steps to allow for observable
evolution and adaptation.
2. Parameter Variations:
o The simulations varied parameters like mutation probability, reproduction
threshold, hunger and thirst thresholds, and sensory radius.
o These variations aimed to test the robustness of the simulation and the
adaptability of the entities to changing environments.
3. Data Collection:
o During each simulation run, data on population dynamics, trait distributions,
and environmental conditions were collected.
o Real-time statistics and graphical plots were generated to provide insights
into the ongoing simulation.

Key Results
Population Dynamics

One of the primary observations was the fluctuation in population size due to the availability
of resources and interactions among entities. Key findings include:

e Resource-Driven Population Changes:

o The population size varied in response to the availability of food and water
resources. Periods of resource abundance led to population growth, while
scarcity resulted in population decline.

o Entities' ability to find and consume resources directly impacted their survival
and reproductive success.

e Interaction-Driven Dynamics:

o Predatory behaviour among carnivorous and omnivorous entities influenced
the population sizes of prey species. Increased predation pressure led to a
decline in prey populations, affecting the overall ecosystem balance.

o Social interactions, such as mating and competition, also played a role in
population dynamics.

Trait Evolution



The simulation demonstrated significant changes in traits over time, indicating adaptation to
the environment. Notable trends include:

e Speed and Sensory Radius:

o Entities with higher speeds and larger sensory radii had a higher likelihood of
finding resources and mates, leading to the propagation of these traits.

o Over successive generations, average speed and sensory radius values
increased, demonstrating positive selection for these traits.

e Reproduction and Survival Thresholds:

o Entities with optimised thresholds for hunger, thirst, and reproduction
exhibited better survival and reproductive success. These thresholds evolved
to balance the need for resource acquisition and reproduction.

o The average values for these thresholds converged towards optimal ranges
that maximised fitness in the given environment.

e Diet Preference:

o The distribution of diet preferences (herbivore, carnivore, omnivore) shifted
based on resource availability and predation pressure.

o In environments with abundant plant resources, herbivores thrived, whereas
environments with more prey supported higher carnivore populations.

Graphical Analysis

Graphical plots provided valuable insights into the dynamics of the simulated ecosystem.
Key visualisations include:

e Population Trends:

o Plots of entity population over time showed distinct cycles of growth and
decline corresponding to resource availability and environmental conditions.

o These plots helped identify critical periods of resource scarcity and population
bottlenecks.

e Trait Distributions:

o Graphs depicting average values for speed, sensory radius, reproduction
threshold, hunger threshold, and other traits illustrated the evolutionary trends
within the population.

o These visualisations highlighted the adaptive changes and the emergence of
favourable traits over generations.

o Diet Preferences:

o Plots showing the percentage distribution of diet preferences (herbivore,
carnivore, omnivore) provided insights into the ecological balance and the
impact of predation on population dynamics.

o Shifts in diet preference distributions indicated changes in the ecosystem
structure and resource utilisation patterns.

Conclusion

The testing phase of the Ecosystem Simulation Project successfully demonstrated the
complex interactions and adaptive behaviours of entities within a dynamic environment. The
key results highlight the significance of resource availability, interaction dynamics, and trait



evolution in shaping the ecosystem. The graphical analysis provided a comprehensive view
of the simulation's performance, offering valuable insights into the underlying processes
driving the observed patterns. The results validate the effectiveness of the simulation model
and its potential for further studies in evolutionary biology and ecology.



8. Challenges and Solutions

Challenges

The development and testing of the Ecosystem Simulation Project presented several
challenges, each requiring thoughtful solutions to ensure a functional and efficient
simulation. Key challenges included:

1. Balancing Resource Availability:

o Maintaining an appropriate balance of resources (food and water) was crucial
to ensure a stable population of entities. Insufficient resources led to rapid
population decline, while excessive resources caused unrealistic population
growth.

2. Entity Behaviour Optimization:

o Tuning the neural networks that governed entity behaviour was critical to
achieving realistic and effective actions. The challenge was to ensure entities
could make decisions that promoted survival and reproduction while
navigating the complex environment.

3. Performance Optimization:

o As the simulation's complexity increased, maintaining real-time performance
became challenging. Efficiently managing large datasets and ensuring
smooth rendering of the simulation required significant optimization efforts.

Solutions

To address these challenges, several solutions were implemented, enhancing the
simulation's robustness and performance:

1. Dynamic Resource Management:

o Regrowth Mechanics: Implemented a system where plants could regrow
over time, ensuring a steady supply of food resources. Tiles representing land
had a probabilistic chance to generate new plants after a certain period,
maintaining resource availability.

o Probabilistic Resource Placement: Initial placement of resources was
determined using a probabilistic approach, distributing plants and water
sources in a balanced manner across the map. This helped in creating a
realistic and varied environment for the entities.

2. Neural Network Tuning:

o Parameter Adjustment: Fine-tuned the parameters of the neural networks,
such as learning rates, reward functions, and action selection mechanisms.
This ensured that entities could learn and adapt their behaviours more
effectively.

o Training Process Improvement: Enhanced the training processes by
incorporating techniques like experience replay and mini-batch updates. This
allowed the neural networks to learn from a diverse set of experiences,
improving decision-making accuracy.

3. Efficient Algorithms:



o Code Optimization: Refactored the code to improve efficiency, including
optimising loops, reducing redundant calculations, and enhancing memory
management. This resulted in smoother performance and reduced
computational overhead.

o Handling Large Datasets: Implemented efficient data structures and
algorithms to handle the large datasets generated during the simulation.
Techniques such as batching updates and using optimised libraries (e.g.,
NumPy, PyTorch) ensured efficient data processing.

Implementation Details

1. Dynamic Resource Management:

o Regrowth Time: Each land tile had a regrowth timer that counted down, and
once it reached zero, the tile had a chance to regrow a plant based on a
predefined probability. This mechanism ensured a dynamic and
self-sustaining ecosystem.

o Initial Resource Distribution: The initial distribution of resources was
generated using Perlin noise, creating a realistic terrain with varying
elevations and resource concentrations. This randomness mimicked natural
landscapes, providing a diverse environment for the entities.

2. Neural Network Tuning:

o State Representation: Entities' state vectors were carefully designed to
include relevant features such as hunger, thirst, reproductive urge, position,
and proximity to resources and mates. This comprehensive state
representation enabled better decision-making.

o Reward Function: The reward function was crafted to incentivize survival
behaviours (e.g., finding food and water) and penalise negative states (e.g.,
starvation, dehydration). This guided the neural networks to prioritise actions
that improved entity fitness.

3. Efficient Algorithms:

o Experience Replay: Used a memory buffer to store past experiences,
allowing the neural networks to learn from previous actions and their
outcomes. This helped in stabilising the learning process and improving policy
updates.

o Batch Processing: Implemented mini-batch processing during training to
optimise the computational load. By updating the neural networks using small
batches of experiences, the simulation maintained high performance without
compromising learning quality.

Conclusion

The challenges faced during the development of the Ecosystem Simulation Project were met
with innovative and effective solutions. Dynamic resource management ensured a balanced
and sustainable environment, while neural network tuning and efficient algorithms enhanced
the realism and performance of entity behaviours. These efforts collectively contributed to a
robust and dynamic simulation, providing valuable insights into ecosystem dynamics and
evolutionary processes. The project demonstrates the potential for simulating complex
biological systems and offers a foundation for future research and development in this field.






9. Future Enhancements

Potential future enhancements include:

1. Enhanced Al:

o

More Sophisticated Al Models: Implementing more advanced artificial
intelligence models could significantly improve the decision-making
capabilities of entities. Leveraging deep reinforcement learning techniques
and incorporating recurrent neural networks (RNNs) or attention mechanisms
could help entities better adapt to complex, dynamic environments and exhibit
more realistic behaviours.

Behavioural Diversity: Introducing mechanisms to support a broader range
of behaviours and learning strategies among entities, enabling them to
develop unique survival tactics based on their experiences and environmental
conditions.

2. Complex Interactions:

o

Cooperative Behaviours: Allowing entities to engage in cooperative
behaviours, such as forming packs for hunting or sharing resources, could
add a new layer of complexity to the simulation. This would also provide
insights into social dynamics and group strategies within ecosystems.
Competition and Predation: Enhancing the predation and competition
mechanics to reflect more realistic scenarios. This could involve developing
detailed models for predator-prey dynamics, territory establishment, and
resource competition.

Ecosystem Dynamics: Introducing additional species with different
ecological roles (e.g., decomposers, pollinators) and modelling their
interactions with existing entities to create a more holistic ecosystem
simulation.

3. Extended Visualisation:

o

Detailed Visualisation Tools: Adding more comprehensive visualisation
tools to analyse the simulation data. This could include heat maps for
resource distribution, movement patterns of entities, and real-time graphs
showing population dynamics and genetic variations.

Interactive Dashboards: Developing interactive dashboards that allow users
to explore various metrics and visualise the relationships between different
parameters and outcomes in the simulation.

3D Visualisation: Transitioning to a 3D visualisation framework to provide a
more immersive experience and better spatial understanding of the
ecosystem.

4. User Customization:

o

Customizable Simulation Parameters: Allowing users to customise various
simulation parameters, such as environmental conditions, initial population
characteristics, and mutation rates. This flexibility would enable users to
explore different scenarios and study their impact on the ecosystem.
Scenario-Based Simulations: Introducing predefined scenarios or
challenges that users can run to observe specific phenomena, such as



climate change effects, introduction of invasive species, or resource depletion
scenarios.

o Modding Support: Providing support for user-created modifications (mods)
to the simulation, allowing the community to introduce new features, species,
or behaviours.

5. Improved Performance and Scalability:

o Parallel Computing: Leveraging parallel computing techniques and
hardware acceleration (e.g., GPU) to improve the simulation's performance
and handle larger, more complex ecosystems in real-time.

o Optimization Algorithms: Continually refining the optimization algorithms to
reduce computational overhead and enhance the efficiency of the simulation.

o Distributed Simulation: Exploring the possibility of distributed simulation
frameworks that allow for large-scale simulations spanning multiple
computational nodes.

Conclusion

The Ecosystem Simulation Project has demonstrated a robust and dynamic simulation
environment, providing valuable insights into ecosystem dynamics and evolutionary
processes. Future enhancements aimed at advancing Al capabilities, introducing complex
interactions, extending visualisation tools, enabling user customization, and improving
performance will further enhance the simulation's utility and realism. These improvements
will not only contribute to scientific research but also offer educational and recreational
opportunities for users interested in exploring the fascinating world of ecosystems.



10. Conclusion

The Ecosystem Simulation Project has successfully achieved its objectives, resulting in a
dynamic and interactive simulation that effectively models ecosystem interactions and
evolutionary processes. This project marks a significant advancement in the field of
ecological modelling and artificial intelligence. The following points highlight the key
achievements and future prospects of the project:

1. Realistic and Adaptive Entity Behaviours:

o The integration of neural networks into the simulation allowed entities to
exhibit realistic and adaptive behaviours. By utilising reinforcement learning,
entities could make decisions based on their current state and environmental
conditions, leading to more lifelike interactions and survival strategies.

o Entities displayed a variety of behaviours, including seeking food and water,
hunting prey, avoiding predators, and reproducing. These behaviours evolved
over generations, providing valuable insights into how different traits and
strategies can affect an entity's survival and reproductive success.

2. Detailed and Interactive Environment:

o The simulation environment was meticulously designed, with a diverse range
of tiles representing different terrain types, such as land, water, sand, and
trees. This diversity allowed for complex interactions between entities and
their surroundings.

o The introduction of plants and their regrowth dynamics added another layer of
realism, influencing the availability of resources and the distribution of entities
within the environment.

3. Comprehensive Visualization and Analysis Tools:

o The project included extensive visualisation tools that allowed users to
monitor and analyse various aspects of the simulation. Real-time statistics
and graphs provided insights into population dynamics, genetic variations,
and behavioural patterns.

o Interactive features, such as the ability to select and observe individual
entities, further enhanced the user experience and facilitated a deeper
understanding of the simulation's inner workings.

4. Continuous Testing and Optimization:

o Rigorous testing and optimization were conducted throughout the project to
ensure the stability and performance of the simulation. Various parameters,
including learning rates, mutation probabilities, and environmental conditions,
were fine-tuned to achieve optimal results.

o The simulation was designed to be scalable, allowing for the inclusion of more
complex behaviours and interactions in future iterations without compromising
performance.

5. Future Enhancements:

o While the current simulation provides a robust foundation, there are
numerous opportunities for future enhancements. Potential improvements
include the implementation of more sophisticated Al models, the introduction
of cooperative behaviours and competition, the addition of detailed
visualisation tools, and the provision of user customization options.



o These enhancements will not only increase the realism and analytical
capabilities of the simulation but also expand its applicability in various fields,
such as ecological research, educational tools, and gaming.

Summary

In conclusion, the Ecosystem Simulation Project has successfully created a detailed and
dynamic simulation environment that models the complexities of ecosystem interactions and
evolutionary processes. The integration of neural networks has enabled entities to exhibit
realistic and adaptive behaviours, providing valuable insights into ecosystem dynamics.
Continuous testing and optimization have ensured a stable and performant simulation.
Future enhancements, as outlined, hold the promise of further improving the simulation's
realism and analytical capabilities, making it an invaluable tool for both research and
education.

Appendices
Appendix A: Requirements.txt

makefile

Copy code
pygame==2.1.0
numpy==1.21.0
matplotlib==3.4.2
torch==1.9.0
pynoise==1.2.3

Appendix B: Key Functions and Classes

e generate_map: Generates the environment map using Perlin noise.

e update_environment: Updates the state of the environment, including plant
regrowth.

draw_environment: Renders the environment on the screen.
calculate_avg_genes: Computes average traits of the entity population.
draw_stats: Displays real-time statistics of the simulation.

plot_graphs: Plots simulation data for analysis.
Appendix C: Simulation Parameters

e Screen Dimensions: SCREEN_WIDTH = 800, SCREEN_HEIGHT = 660
e Map Dimensions: MAP_WIDTH = 1600, MAP_HEIGHT = 1200
e Tile Size: TILE_SIZE = 20



Simulation Speed: FPS = 60

Entity Attributes: REPRODUCTION_THRESHOLD = 100, HUNGER_THRESHOLD =
600, THIRST_THRESHOLD = 600

Resource Parameters: PLANT_PROBABILITY = ©0.601, REGROWTH_TIME =
500

Neural Network Parameters: BATCH_SIZE = 64, ADULT_AGE = 1060
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